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We present an original numerical method to discretize the Kohn—Sham equations
by a finite difference scheme in real-space when computing the electronic struc-
ture of a molecule. The singular atomic potentials are replaced by pseudopotentials
and the discretization of the 3D problem is done on a composite mesh refined in
part of the domain. A “Mehrstellenverfahren” finite difference scheme is used to
approximate the Laplacian on the regular parts of the grid. The nonlinearity of the
potential operator in the Kohn—Sham equations is treated by a fixed point algorithm.
At each step an iterative scheme is applied to determine the searched solutions of
the eigenvalue problem for a given fixed potential. The eigensolver is a block gen-
eralization of the Rayleigh quotient iteration which uses Petrov—Galerkin approx-
imations. The algorithm is adapted to a multigrid resolution of the linear systems
obtained in the inverse iterations. Numerical tests of the different algorithms are
presented on problems coming from the electronic structure calculation of some
molecules. (© 1999 Academic Press
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1. INTRODUCTION

Over the last years real-space methods have appeared in the domainabf iBifio
electronic structure calculations for numerically solving the Kohn—Sham (KS) equat
[1-10]. The main reason to replace the classical plane wave expansion of the orbitals by
new discretization schemes is their local feature, allowing natural local mesh refinen
[7, 10] and efficient subdomains decompositions on massively parallel supercomp
[4]. Moreover, this approach is more natural for nonperiodic systems. The computz
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of the kinetic energy associated to a wave function in real-space requires high-order fi
difference (FD) schemes. Such schemes can lead to wrong results if they involve nc
too far from each other, in particular if they are applied to rapidly oscillating function:
compared to the mesh spaces. The “Mehrstellenverfahren” finite difference schemes
permit us to obtain higher orders by using nodes confined in a smaller volume than clas:s
schemes. In the case of the 3D Laplacian, order four formulas are available that invc
only the neighbor nodes confined in a cube of volurhe<2h x 2h (whereh denotes the
grid spacing) around the node considered, so allowing easier combination with local m
refinement and Dirichlet boundary conditions.

Discretization of the KS equations by FD, or finite elements methods, leads to large-s
linear algebra eigenvalue problems requiring efficient iterative eigensolvers. In gene
the involved matrices are sparse and we are only interested in a small fraction of
spectrum (the smallest eigenvalues) and the corresponding invariant subspace. In qua
calculations, Davidson’s method [12, 13], a diagonal preconditioned Lanczos’ methoo
the most used because of the diagonal dominance of the matrices. Recently an impr
version has been proposed: the Jacobi—-Davidson method [14]. The idea of these met
is to generate in an adequate way a subspace of much smaller dimension than the ¢
in which the problem is defined, and then to process diagonalization in this subspace.
dimension of these subspaces has to be larger than the number of searched eigenpai
could become prohibitively large on very large-scale eigenvalue problems, so that tt
methods are not well designed for the resolution of the problems we encounter in quan
chemistry when discretizing the equations with a large number of degrees of freedom.

The multigrid method [15, 16] is also a mathematical tool that has recently appea
in different methods used for solving the KS equations [3—6, 9]. It drastically improv
the convergence rates of the classical iterative linear systems solvers by using coarse
approximations of the partial differential equation for solving. At the same time, it allov
us to use iterative methods for the eigenvalue problems like the Rayleigh quotient itera
(RQI) method that could not be applied on large-scale problems without an efficient lin
systems solver.

In this paper we present a generalization of the method first described in [5]. We prop
a scheme to discretize and numerically solve the KS equations on a grid composed of
regular grids, the coarser covering the whole domain and the finer having a mesh space
times smaller and covering just the part of the domain where we want more precision.
ionic potentials are represented by nonlocal pseudopotentials so that we do not have to
with singular potentials and core electrons [17]. We use the local density approximat
(LDA) model for the exchange and correlation potential. The discretized KS equatic
are solved by a self-consistent (SC) iterative scheme in which, at every step, an eigenv
problem with fixed potential is solved by a block generalization of the RQI. One of the me
features of the method is that it avoids generating search subspaces (in which we diagon
the operator) of dimension larger than the number of desired eigenvalues. Moreover, it tr
simultaneously and in the same way all the search eigenpairs. The power of the multi
method is used to efficiently solve the indefinite linear systems resulting from the inve
iteration equations present in the algorithm. Numerical tests of convergence of the multi
method and of the eigenvalue solver are presented in Section 5 on examples provided i
case of the electronic structure calculation of the furan molecule.

The method described here includes the particular case of regular grids treated ir
and extend it to composite grids. In particular the multigrid algorithm is generalized to t
resolution of the linear systems obtained in the inverse iterations on the composite grids.
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applications on which the algorithms are tested and applied are less academic and shc
applicability of the method to more general electronic structure calculations. In partici
we treat the furan molecule §OH,) with the ionic Bachelet-Hamman—Schlueter (BHS
pseudopotentials introduced in [18]. More mathematical details can be found in [6].

2. FD SCHEME ON COMPOSITE GRID

For simplicity reasons, we choose to workin the cubic dorfain(0, L) x (0, L) x (O, L)
with homogeneous Dirichlet boundary conditions. The generalization to a parallelepi
domain is straightforward. Let us first define a regular mesh on the damain

QE ={(§’ n, C)EQ|$=Ih[’n=Jh€7C=kh€71§ i’ ]’kf n(}v (1)

defined for € N, composed ofi? inner nodes, witm, =a-2+* — 1, h, = L /(n, + 1) being
the distance between nodes along the threesaxisand; , anda € N fixed. In this paper, we
will always takea = 1. As in the multigrid literature/, designates the grid level. The grid are
indexed so that they contain more pointgascreases. Implicitly (by not introducing any
nodes ord2), we have imposed homogeneous Dirichlet boundary conditions, but peric
ones could be chosen without main changes in the algorithms presented below. By an.
with the notations ilR® we write

Q={¢E n0eQ|e=ih,n=jh, ¢=kh,0<i,j k<n +1}.

We denotef, the finite dimensional vectorial space of the real_functions defined,on
Let(iy, j1, k1) and(iy, j2, ko) be the coordinates of two nodesefsuchthatG<i; < i, <
n+1,0<ji<ja<n,+1,and 0< ky < ks <n, + 1. We define the parallelepiped subdo

mainw of Q by
. 1 ) 1
w:{(é,n,é’)eg‘(ll——)h4<g<(|2+_>hz7
2 2
.1 o1
(13 <r= (a2
1 1
(kl_é)h[<§< (k2+§>hg}

In this subdomain, we introduce the regular grids
wy = Q2 Now,

we1 = Q1 Now,

where,; is defined by (1) with the indek+ 1 instead of. By analogy with the notations
in R3, we write

dwyr1 = Qpy1 Now,
w1 = 01 U 0wpia.
The composite mesf2,. 1 is then defined by the union of the two regular grids,
Q1= w1 U Q.

We note that, i2 C w, 2441 =41 is a regular grid.
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FIG.1. Compositegridwitt =2,i;=j; =k =3,i,=j, =k, =5:(a)¢ =kh,,k<k; or_k > ky; (b) ¢ =khy,
ki <k <kg; (€) £ =(k+ 2)hy, ks <k <kp; (d) £ = (ky — $)h; or £ = (ko + $)h,. Nodes:o: Q\wei1, © w1 N
Q, 0 w31\, <200, O: 80P, 00,

Instead of introducing slave points on the interface between the refingg) and non-
refined(2,\w,) parts of the grid, we consider the composite mesh as a nonuniform g
near the interface. So we are led to introduce nonuniform finite difference stencils at
interface grid points contained ifw, .1 [19]. Note here that such an approach would
be much more difficult to put in practice with high order finite difference schemes i
volving values on more distant nodes. We decompasg ; in three disjoint subsets of
nodes,

1 2 3
dwps1 = degjy Udwgy Udogy,

to which we associate three specific stencils. These subsets are defined (see Fig. 1) a

doD) = ((5,1,0) € dwpra] (€ £ hesn, 0, ) € Qg
¢ nEhe1 0) € Q.
(& 0. ¢ Ehe1) € Qe
36021)1 = {(€,1,¢) € dwpsa] (E £ her1, nEheya, E£ha) € Qoial,
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and
(2 3 (1)
dwy = 8a)g+1\{8w6+1 Udwyly;-

For each subset, we will define a finite difference operator for the Laplacian that is ada
to the neighbor nodes available. Figure 1 shows views of the composite @gglon
planes¢ = const for an example with=2. We associate t@,,, the finite-dimensional

functional spacé ., defined by
5 (30 5@ 5@ @ 5O
{U€+1— (Uz+1’ Vpt1s Vp1s Vpy1s UV z+1> ‘ Ue+1 D Q\w, — R,

~ .
Uppq - We41 — R,

~(3) . 1)
Ugp1 t 0wy —> R,

~(4) . 2
Vpyq - 0wy — R,

~(5) . 3)
Dy 1 doyy — R

5Z+1 =

It is easy to see that it is isomorphic to the finite-dimensional vectorial space of the
functions defined o, ;. In the following, we will not distinguish between them. We will
use the scalar product ) between two function&,,; anduvy 1 € £g+1, defined by

(Qes1, Vo) 5 = h? Z Q410 Do (X) + M3 4 Z Upr1(X)Ve11(¥),  (2)

Xe(S2\wy) XEWy11

which is a consistent approximation of the integfelu(x)v(x) dx if G, 1(X) =u(x) and
f)@Jr]_(X) =v(X) forx e Q(er-

The tools are now ready to introduce a FD scheme for the Laplacian on the comp
grid €¢41. It is based on a “Mehrstellenverfahren” scheme of order 4 in the regular part
the grid (2, \w, andw,1) and on specmc schemes of order 2 on the nddes ;. In this
purpose, we define the discrete opera®rs;, and B, 1 by their action orl,; € 55+1,

A 0 D a@ aB a@® b
Ceralpr = (Eiy €31, 621, € €24), 3)
where
A1 ~ ~ ~
€ (%0) = oz | 2A0e+1(x0) — 2 DR TEETC D NP Y9
L XeQy X€EQ
[x—Xoll=h, IX—Xoll=+/2h;
for xg € (2¢\wy),
@ 1 3 5 3
Clra(X0) = g | 240e41(X0) — 2 > G0 — Y G
041 XEwp41 XEWyi1
[X=Xoll=he+1 IX—Xoll=v/2N¢ 41
for Xg € wgy1,
(3 ~ ~
E00) = 5 Blpa(X0) — D> Gpa(X)

h2 -
i+1 N
[IX=Xoll=h¢+1
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for o € dwl,,

a@®

Crir(X0) = 55— Blia(X) =2 Y U0 — Y. Oa(¥)
+1 xeawgl Xey
IX—Xoll=hy 1 IX—Xoll=v/2N¢11
for xo € 0%,
A(5) _ - _ N
6100 = g B0 > G
XEQ(‘
IX—=Xoll=+/3N¢41
for xp € awﬁl, while
5~ D L@ BB R G
Beralies = (B, By, B4, B2y, B21). “)
where
blix0) = 75 4800 +2 Y B0+ D Bea()
Xey XeQy
IX=xoll=he IX—oll=v/2h,

for Xo € (Q(\a)g),

- 1 R . .

b1 (%) = 7 480,11(%o0) + 2 Z Up1(X) + Z Up+1(X)

XEwy41 XEWp41
IX=oll=he.1 IX=Xoll=v2h 41

for xg € Wy1,

~n(3 ~ 1
b1 (x0) = Ges1(%0) for xo € do®y,

~4 A 2
biY1(X0) = Oeq1(X0) for Xo € dev 2y,

(5 ~ 3
b1 (%0) = Oy1(X0)  for xo € dewf s

If Q117 .1, the operator€,., andB. 1 are not symmetric, but nevertheles, 1 is
well conditioned, in contrast to the less expensive “Mehrstellenverfahren” finite differen
scheme used in [4], even for periodic boundary conditions. Moreover, both operators ca
represented by sparse matrices. The oper&ors andB,; have been designed in order
that we obtain, fou e C®(Q), u=00ndQ [6],

Cera)(X0) = (Beya(—Au))(xo) + O(hY) (5)
with k =4 for xg € (¢ U wyy1) andx =2 for xp € dw,y1. It means that on the nodes
of dwe.1, the finite difference schemes give the order 2, while on the other nodes
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“Mehrstellenverfahren” schemes using all the nogesich that|x — Xo| < v/2h41 give
the order 4.
Let us begin by applying the discretization scheme described above to the Poi
problem:
(—Av)(X) =4drp(X), Xe 6
{v(x):o, X € o02. ©)

We discretize this equation on the composite mfesh using the finite difference scheme
(5). So we have to look for a solutian € £, of the equation

Coi1der1 = 47 Biahoyas (7)

wherep, ;1 € égﬂ is defined byp;_ 1 (X) = p(x) for x € szl. Using standard finite differ-
ence theory (see [20] for example), we easily obtain a convergence result for this scher
we assume that Eq. (6) has a unique solutievhose regularity i€%+*(Q), « =1, 2, then
the maximum of the error between the discrete solulipn of (7) and the exact solution
uis O(hy).

We note that the number of nodes on the boundary,; is small(O(n?)), compared to
the total number of nodeé© (n?)) on the whole mesh. We therefore expect to have globally
convergence of order larger than 2. But more importantis the fact that the solutions comg
onthe gridﬁg+1 will exhibit an error of same magnitude as the solutions computee,on
(see Section 5). This method will be used in the SC resolution of the KS equations to d¢
the Hartree potential, solution of a Poisson problem.

Our purpose is to discretize the KS equations [21] (in Rydberg units)

HKSg ) — _Ap) 1 yKSy — E(i)\p(J)7 i=1....p

whereA designates the Laplacian operatoRif) ande® < ... <€ < ... are the small-
est eigenvalued/KS is the potential operator composed of the Hartree (Coulomb inter:
tions), exchange and correlation, and pseudopotential terms. It is nonlinear because
dependence of the two first terms on the electronic density

p
P00 =3 2wV

=1

The factor 2 accounts for the electronic occupation numbers assumed to be all equa
work with the exchange and correlation potential given by the local density approxima
(LDA) model and describe the ions by the BHS nonlocal pseudopotentials given in [1€

If we assume that a regular g1z}, ; is fine enough on the whole domain to obtain a goo
approximation of the solutions of the KS problem, we will replace this one by a compo:
grid Q.. in order to decrease the number of nodes outside, efhere the solutions are
very smooth and regular. #fandw are well chosen, the solutions obtained should be almc
the same using,.1 or Q.1 (see Section 5), but much less expensive to compute on-
composite mesh. _

The discretized problem df,., ; consists in looking for thgp smallest eigenvalu 1

, +10
el <e? <... < &P and thep corresponding eigenfunctions;, j =1,2, ..., p,
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solutions of the eigenvalue problem

~()) \3,() ;

Bz+1He+1[Pe+1] ‘I’Hl = 661+1\IJ£J+1’ (8i)
p

raa(¥) =Y 2| ¥ x € Q1. (8ii)
j=1

(B ¥) =05, i=Ll...p (8iil

WhereHHl[le] =Co1 + BZ+1VZ+1[Pe+1] Using the BHS nonlocal pseudopotentials
[18], V41 can be defined by its action on a function., € SHl which can be written in
the form

(VeralPesal0e10) 00 = v[peaa] 000200 + D (11, Gera) 75600100 (9)
i=1

for x € Q,.1, wherev is the local part of the potential anﬁﬂll,i =1,...,s, are radial
functions, each one centered on one atom and decreasing very rapidly to zero far from
atom.

If @ C w, the eigenvalue problem (8) is symmetric so that the eigenvalues are real anc
eigenfunctions can be chosen real and orthogonaf?if* > ¢, the problem (8) is then
mathematically WeII defined. But if the refinement does not cover the whole domain,
operatorBHlH 11 IS not symmetric in general. Nevertheless, if the composite grid is fir
enough to well describe the searched eigenfunctions, what should be the case in practi
the choice of, the computed solutions are almost the sam@gn or Q1 (see Section 5)
so that we can expect the elgenvallslkéﬁbelng real and the eigenfunctions bem@ml
In the following we will assume it is like this and the orthogonality will be imposed only
for the eigenfunctions associated to multiple eigenvalues. Actually the departure from 1
assumed ideal case is only due to the discretization error, the nondiscretized operator t
symmetric.

3. BGII ALGORITHM FOR SOLVING THE EIGENVALUE PROBLEM

We propose to treat the nonlinear problem (8) by a classical relaxed fixed point algorit
also called self-consistent (SC) iteration. One step consists in solving the eigenvalue prot
(8) for afixed operatoB, }, HS,, that s a fixed potentlal'?}fl The solution of this problem
defines anew densnzy‘ji"lv Thenthe operatdﬂ 11 is updated, replacing the potent\b;?
by a linear mixing ot\/"'dl andVHl[ 1511 Iterations are performed until self-consistency
is achieved. That is until the difference betweaéi?i+l and VHl[erW] is smaller than a
given tolerance. The purpose of the block Galerkin inverse iteration (BGII) algorithm v
describe below is to solve efficiently the eigenvalue problem with linear operator (fix
potential) at each step of the SC scheme.

Let us assume that we know a good approxima‘t}m of the p-dimensional subspace
Z:lul spanned by the searched eigenfunctior‘fsﬁl on the refined grid2,,, for a given
potentialV ... We want to improvef)“l by a generalization of the RQI method. First of all
we compute good initial eigenpairs for the process by performing a subspace diagonalize
of Be+1He+1 in Ve+1 In order notto have to mveEtgH, thisis done by applying the Petrov—
Galerkin method (see, for example, [22]) WM@+1 as the right subspace arBj +1Vz+1



FD AND RQI FOR ELECTRONIC CALCULATIONS 83

as the left subspace, where the exponeinidicates we take the adjoint of the operator. |
means that if the approximate subspace is spanngdlimgar independent functions,

\; ~() ~(p)
Vera=spa{dy)y, ... 0%},

we have to solve the-dimensional matrix eigenvalue problems
cwi) = O(j)MW(j), (10)

where the matrix elements are given by

( @) HKS ~(K)

L (B* 5O A-1 15KS ~(k)
G'k—(B +1V¢+415 Bz+1Hz+1Uz+1)g+1 Vet 1Uz+1)4+1’

o (B* 50 sk _ ®
Mik = (B€+1U€+1’ U€+l)@+1 <v15+1a BZ+1U€+1)£+1

In general, if the subspadéﬂ is not invariant, the matrisM ~1G is not symmetric so
that the eigenvaluet’’) can be complex. In order to only work with real numbers, we ha
to take it into account. 1§ is real we simply choose

g?Jr)l =0
and define the new approximation of tjid eigenfunction as

P

D) ~(K)

“I’e+1 Z W(]) ) Deas (11)
k=1

where(w(), is thekth component o). If the eigenvalueg)’ andg'*+Y are complex
conjugate, i.ed)) =9(+D we notew)) +iw+D the associated eigenvectors—as returne
by the LAPACK routine DGEEV [23] used to solve (10). In that case we treat the two vect
wd andw(+D as two basis vectors of a two-dimensional eigensubspace associated
double eigenvalue Re()).

To improve the trial subspaoé+1, we use the generalized inverse iteration reported
[5]. For the problem (8), a classical RQI iteration [24] can be written for the eigefpair

~ ~ 1 ; ~ (i
-1 ~()) § i) (i)
(BiHi - &) o5 £ (T +o00h) = o), (12)

wheres ¥, the correction to add td{%),, is chosen to be orthogonalig’, for the scalar

product(-, Be+1 ) andg(” is a real coefficient. Let us define the subspace
Vl(it)l _ spar{@éﬁ‘”“”, L @éﬂazu))} céun

for @1(j) anda(j) integers given by

a1(j) = max j—i,
1<i<j, €”’1 52|l1<5
' o (13)
ax()) = max =]

@) (1)
j<i=p.ép,—€.,<8
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for a chosen parametére R. If we multiply (12) by B,,1, then project both sides of the
equatlon onto the subspad®, 1 Hl)l and restrict its solut|on to be in the same subspac
(Bz+1 )l we obtain a new equation f6rI/€+1 € (B[+1 )

Qi (LS — &1 Braa) sy = — QP (HIS, — &) Boya) Wiy, (14)
where Qifl is the orthogonal projector ont(d3g+1VHl)L Equations (12) and (14) are
equivalentifv; (j) = aa(j) = 0. Inthis case the iterative scheme definedty), < ¥{), +
sUW . j=1,..., p, with 5&), the solution of (14), is the classical RQI iteration. But
the linear systems can be singular or very ill-conditioned if we have multiple or clo
eigenvalues. As pointed out by Hackbusch [16], it is important to have a well-posed probl
for the multigrid resolution we have in view (see Section 4). Within our formulation, th
largers$ is chosen, the more the linear system defined by (14) is well-conditioned.

Combining the PG method and the generalization (14) of the inverse iteration, we de
the following algorithm.

ALGORITHM BGilI.

(a) Compute(éfi’fl, \lll(‘fl) eR x Epy, j=1,...,p, by resolution of the PG problem
(10) inVe1.
(b) Compute the solutiofds{”; of Eq. (14) forj =1, ..., p.

(c) Computevf?, =TV, + S\Iflffl, i=1....p.

(d) Czompute(Efz’jl, \Iflffl) eR x 55+1, j=1,...,p, by resolution of the PG problem
(10) in Vz+1.

(e) Test for convergence. Goto (b) if not satisfied.

At step (e), we check for the convergence by evaluating the norm of the residuals

féir)l (A£+1 - gi’]ﬁ-)lé@rl)‘i’(gi)lv i=14...,p (15)

Itcan be shown in the Galerkln case, i.e. when the left subspace is chosenﬁg bestead
of BMVM and whenBHlH 11 IS symmetric, that the convergence of that algorithm i
locally quadratic, provided that the starting subspace is sufficiently accurate [25].

4. MULTIGRID METHOD

At step (b) of the BGII algorithm, we need an efficient tool to solve the linear systen
In this purpose we propose a multigrid method adapted to the composite grids. Let
first describe the idea of the multigrid algorithm for the resolution of a Poisson proble
discretized or2,,1. Assume we know some approximation,; of the solutionv;,; of
Eq. (7). Let us define the defect

d\[_»'_]_ = é[+15(j+1 —4r B[_»'_]_,az_,'_l € SA[+1. (16)
To describe a multigrid iteration, we introduce the grid transfer operﬁmris: éHl — &,

an operator of weighted restriction, aRd: & — é’ul, an operator of prolongation. Instead
of solving Eq. (7) directly, we look for an iterative solution of the equation with the defe
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as a right-hand side,
Coi1Zep1 = dpsa, (17)

starting fromz,,; = 0 and updating; 1 = V¢11 — 241 andd}H after each correction.

To do this we write an algorithm based on the strategy proposed in [16, Section 1!
The main difference comes from the way to deal with the nodes on the interface betv
the refined and nonrefined parts@f, ;. A heuristic justification of the method is based or
a decomposition o, ; in components of “high frequency” and “low frequency” (relative
to the grid2,). The “low frequency” components are those we can represeft, pwhile
the “high frequency” components are functionséi@ll which need a finer grid to be well
represented and whose nonzero values are localizedindefinition ofé,, 1. The former
will be reduced by solving a coarse grid approximation of Eq. (17) corresponding t
problem without refinement,

Ceze = Repadia. (18)

The latter will be reduced by a smoothing process applied to Eq. (17) restricted to
subspac&y,; C £, of the functions whose values are zero outsideaqf;,

7, 1Ceaz ) = N9, de s,
" (29)
2%y € Efy-
HereTl¢,, : £,41— £, denotes the orthogonal projector frd@n, ; onto£Y, ;.
By analogy with a standard multigrid V-cycle, we write the algorithm in the followin
form

Two-GRID ALGORITHM FOR THE POISSONPROBLEM

(a) Performv; presmoothing iterations on Eq. (19).
(b) Updatevi, 1 < i1 — 2 andd .

(c) Solve the coarse grid equation (18).

(d) Updatev 1 < 1 — Peze anddps.

(e) Performv, postsmoothing iterations on Eq. (19).
(f) Updatevi 1 < b1 — 2 andd 1.

This algorithm can be generalized to more than two levels by solving the coarse
problem at step (c) with a classic multigrid V-cycle, i.e. the same algorithm for the partict
case2 C w. Numerical results show that the rate of convergence is the same if the finer
is composite or regular (i.e. refined everywhere) [6].

Remark 4.1. Since the values on all the nodes are defined by the unique solutior
the Poisson’s equation discretized on the composite grid (and not by some extensi
the solutions of a Poisson’s equation on the coarse grid), we do not need to ensure th
equation on the coarse grid to be conservative as in [26]. Here the use of a global c
grid and a local fine grid are just tools to solve efficiently the problem on the compo:
grid.

We will solve iteratively the generalized inverse iteration equation (14) for a gjiver
by an algorithm similar to the one presented for the Poisson problem, i.e. by combir
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corrections coming from “local smoothing” and “coarse grid corrections.” Starting from
approximationS\lJe“f1 € (B(H_lVéL)l)J‘ of S\Iféﬂr)l, the search solution of (14), let us define the
defect

300 3 ~(j)) A 5, () 7, ()
o = (HESL = E41Besa) (U +89.Ly). (20)

We look forzi); e (B,41V{V))* such that

ci A _
M’zqu = Z§J+)1 + B\Ilﬁr)l, (21)

starting from the approximatiog!; = 0. We defineQ{"® : & — (Re;1Br1 ViV * the
orthogonal projector ontoR,418,,1V))*. The functionz) € (Re;1Be11 Vi) *, solu-

tion of the equation
(.R ~(] ' iRB (]
QY (RS —&iB)z) = - QP M Redi!) (22)

can be considered as a coarse grid correction for a multigrid resolution of (14) by the upc
s« QB2 + 50, As before, “high frequency” components are supposed t
be localized inw. By first restricting the RQI equation (12) multiplied By 1 to £, , and

then introducing an orthogonal projectdt’;;’ : £, — W%’ onto the subspace

- . .
Wi = &80 (BeraV) ™ (23)

in the same way as for the problem on the whole grid, we obtain an equatiafi; {dre

o).
1

N(j,w) JKS ~()) R (j,o) __ N(j,w) 7))
QLT (HiF: — €11Beta)zyy = — QAT Y d s (24)

Smoothing on this equation will provide a fine grid correctih?’ to add to2!;. In
Eq. (24), the operator is not positive definite and can be singular, unlike the operator on
whole composite grid. Nevertheless it will not be a problem if we only apply smoothir
iterations on it with GMRES [27]. We verify that the action of the projecfot’ 1%, , on

a functionl,, 4 in E/:Hl consists in restricting,1 to w41, then subtracting its projection
onto the subspace spanned by the function8af; ;! restricted tow; 1, and finally
extending the function obtained fo,; with value zero outside ab,;1. The coarse and

fine grid corrections described above are combined in the following algorithm:
TwO-GRID ALGORITHM FOR THEKS EQUATION

(@) Performv; GMRES iterations on equation (24) starting fraﬁﬁ) =

(b) Updates ¥V, « s, 4+ 214 andd,.

(c) Solve the coarse grid equation (22). _

(d) Updates ), — 89!, + Q) P,z andd!);. _

(e) Performv, GMRES iterations on equation (24) starting framﬁ) =

(f) Updates¥); « s, + 2% anddy),;.

This two-grid algorithm can be generalized to a multigrid algorithm by applying recu
sively the same method for solving the coarse grid problem (@ase). In this case, the
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projectorIIy, , is equal to the identity, while the shif 'fl and the projectorééﬂzl are
defined by the eigenpairs solutions of the stationary &tihger problem on the corre-
sponding grid with the potential defined by a restriction of the one used on the finest ¢
We note that ifw is a cube whose side lengthlig2 (L being the length of the side 6f)
the cost of one local smoothing iteration on the geid.; is almost the same as the cost o
one smoothing iteration oft,. But it is about two times cheaper that one iteration on tt
whole composite grid2,,1 and eight times cheaper that one iteration on a gigh (i.e.,
refined everywhere).

5. NUMERICAL TESTS OF CONVERGENCE

The whole resolution of the problem (8) by the proposed algorithm involves three le
of iterations: SC, BGlI, and the multigrid method for the resolution of the linear syste
in the inverse iterations. Here we are primarily concerned with the BGIl and multig
parts of the method, the original ones. A local quadratic convergence rate can be pr
for the BGII algorithm when the linear systems are solved exactly and when the Peti
Galerkin process is replaced by a Galerkin one (i.e., u@igag as the left subspace) for a
symmetric operatoé;jll-wfl, but theoretical convergence rates are difficult to obtain fi
the multigrid resolution of the linear systems such as Eq. (14). Nevertheless the effici
of these two algorithms in practical problems can be assessed by isolating the diffe
parts of the method and measuring their convergence numerically. This has be dor
problems appearing in the electronic structure calculation of molecules with the propc
method.

The first example we present is the furan moleculgQ8,) discretized on a grid2s,
where( is a cell of side 15 Bohr radii and is a cell of side 8 Bohr centered {a. (One
Bohr radius is approximately 0.5233) This problem involves the self-consistent searc
of 13 eigenfunctions. The whole calculation of the electronic structure of the molec
for given atomic positions (as given in [28]) is made by using the coarser grids to initi
the functions and potentials. The initial approximations of the eigenfunctions and of
nonlinear potential on a given grid are obtained by extension of the ones obtainet
the previous coarser grid, after applying a first PG process that also furnishes the i
eigenvalues (or shifts). If these approximate eigenfunctions are too far from the solut
corresponding to the starting potential, a block variant of the Jacobi—Davidson mef
is applied for the first SC step. This is avoided in the next SC steps by controlling
variation of the potential (keeping it relatively small) and using the last computed soluti
as starting vectors. Figure 2 shows the convergence of the total eBgfgy!}] of the
molecule, during the computation on the successive §igd$§2s, and$2s. The convergence
criterion on each grid is the relatiie, norm of the variation of the nonlinear part of the
potential (Hartree and exchange-correlation parts). In the present example, it has beern
to 10°3. Here, only one BGII iteration is applied in a SC step. In Table I, we give tl
eigenvalues and some energies obtained on the Qrides, and$Q, the ones we use in the
multigrid algorithm. They are compared to numerical values obtained for the same m
with a different methodE®S denotes the ground state energy of the systemEffidthe
kinetic energy of the electrons.

In order to investigate its convergence rate, the two-grid algorithm for the KS equal
defined in Section 4 is applied for the resolution of linear problems like (14). Numeri
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FIG. 2. Relative error on the enerdg[{¥’}] as a function of SC iterations during the ground state searcl
on the three finest grids used in the calculation.

experiments are performed using operators obtained in the electronic structure calcul
of the furan molecule when using BGlI, between two SC iterations. The solutions of
linear problems are chosen a priori with values chosen random&eand define the
right-hand side for the tests. The coarse grid problem@g©are approximately solved by
the same two-grid algorithm. For the tests, we use very accurate solutions for the co

TABLE |
Eigenvalues and Energies of the Furan Molecule as Obtained from Our
Computation on Different Grids

Q Qs Qe [29]
e® —2.644 —2.028 —2.055 —2.041
@ -1.801 —1.444 —1.452 —1.439
e® —1.281 —-1.351 —1.356 —1.342
€@ —-1.157 —1.086 —1.089 —-1.075
€® —1.001 -1.016 -1.019 —1.005
€® —0.942 —0.978 —0.982 —0.969
e® —0.926 —0.829 —0.828 —-0.814
€® -0.784 —0.795 —0.795 -0.782
€® —-0.762 —-0.722 —-0.723 —0.710
€10 —0.687 -0.712 -0.712 —0.699
e -0.578 —0.657 —0.660 —0.646
€12 —0.370 —0.518 —0.516 —0.502
e®d -0.367 -0.423 -0.423 -0.411
Ecin 107.31 65.231 64.022 63.970

ECS —94.042 —82.500 —82.251 —82.268
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FIG. 3. Convergence of the error for the multigrid resolution of linear systems appearing in the electrc
structure calculation of the furan molecule by BGII, for different eigenpairs of indic&se norm of the error is
plotted as a function of the number of cycles of the algorithm.

grid problem on€2,4. But in practice, the resolution of the problem on the coarsest g
(31x 31x 31) is not trivial. However, an approximate solution obtained after a limite
number of GMRES iterations~20) is in general sufficient. We so apply a tri-grid algorithm
Indeed we observed that the employ of coarser grids for the potentials we use damac
convergence rate. Figure 3 shows the norm of the error after each cycle. Thejind
indicates to which eigenvalue are related the shift and projector used in the operators
the BGII algorithm we report in Fig. 4 the minimum, maximum, and mean values of 1
norm of the residuals, as defined in Eq. (15), measured on the 13 simultaneously com|
eigenpairs, for initial approximations and potential obtained between two SC iteration
the whole calculation. In this test, the linear systems obtained in the inverse iteration
of the algorithm are only approximately solved by two cycles of the two-grid algorith
(with v1 = v2 = 2). Note that all the results for the furan molecule have been obtained us
a coefficients = 0.1[Ry] in (13), leading to subspac&éfl of dimension between 1 and 4
(see Table I).

A good way to check the accuracy of the discretization scheme proposed in this pay
to compute the electronic structure of a single atom and to compare the numerical re
with a calculation using the same model (LDA) and pseudopotentials (BHS), but sol\
the radial equations in the spherical approximation (for an equidistribution of the electt
in the highest occupied orbitals). That way, we have a very precise estimation of the re
we try to reproduce in our 3D calculation. Actually, the only differences between |
two approaches for fully converged results are the boundary conditions. In Table I,
present the results obtained for the oxygen atom, an element which requires a very
discretization. We can observe the good agreement between the results obtained on
127 x 127x 127(Q) and a grid 63« 63 x 63 refined in the centefs).
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FIG. 4. lllustration of the convergence of the residuals for the BGII algorithm. The convergence is evalua
for an eigenvalue problem with fixed potential between two SC iterations in the electronic structure calcula
of the furan molecule. In the inverse iterations, the linear systems are approximately solved by two cycles o
multigrid algorithm withv; = v, =2.

As an example of the agreement between the eigenfunctions computed on regular
refined grids, we show in Table Il the results obtained for the silicon atom without intere
tion between electrons. Actually, we look at the first eigenpair of a stationarp&olger
problem with the silicon atom pseudopotential. In this case, the single eigenfunction cc
puted on different grids can be comparéd : £,.1 — &, £ =4, 5, denotes the restriction
operator defined by, 1v,41)(X) = vul(x) X €y, vpp1 € &1, andl 6.6 — 56, denotes
the restriction operator defined by6v6)(x) =vg(X), X € Q6. v6 € Es.

To show the importance of the grid refinement when looking for the equilibrium positiol
of the atoms in a molecule, we present and compare in Fig. 5 the ground-state energy ¢

TABLE Il
Numerical Results for the Oxygen Atom (in Rydberg), Centered in a Cubic CellQ2 of
Dimensions (12 Bohr}, for Different Discretization Grids, Compared to a Result Obtained
for the Radial Problem (1D) for the Same Model (LDA + Oxygen BHS Pseudopotential). The
Refinement Domain is a Cube of Dimensions (6 Boht)Centered on the lon

Q4 Qs Qe Qs Radial
e —1.87774 —1.72484 —1.74379 —1.74345 —1.74645
€? —0.62944 —0.67738 —0.67299 —0.67266 —0.67409
e® —0.62944 —0.67738 —0.67299 —0.67266 —0.67409
e —0.62944 —0.67738 —0.67299 —0.67266 —0.67409
ECS —31.0485 —31.6008 —31.4994 —31.4989 —31.4936

gcin 21.0788 24.0349 23.5281 23.5286 23.4697
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TABLE 11l
First Eigenvalue Obtained for the Pseudopotential of a Silicon Atom without Any Interaction
Between Electrons, and Comparison of the First Eigenfunction (Normalized) Obtained on the
Grids 4, Qs, 6, Qe

e e er el e?(1D)
—3.32311963 —3.31844813 —3.31823856 —3.31823816 —-3.318226
flug” — 1sug” |14 lug” — 16ugls 168" — Teuglls

4.8e-03 2.3e-04 4.1e-06

CO molecule for different interatomic distances obtained on a regular grid and on a ref
grid. The computation has been performed in a cubic cell of side 16 Bohr, using a reg
grid of 63x 63 x 63 nodes. The refinement has been done in a cube of side 8 Bohr, cent
in the cell. For the computation without refinement, we observe the presence of two |
minimas, separated by a distance close to the grid sp&ging 0.25 Bohr, manifesting a
lack of translational invariance. The same phenomena has been observed in [7] fopthe
molecule. The introduction of the mesh refinement corrects this problem and the reg
curve obtained has a single minima we can estimate by a quadratic fit to be at 2.129 |
This value is very close to the value obtained in [7] (2.132 Bohr) with the same model (L
and BHS pseudopotentials). The results clearly show the improvement in the determin
of the ground state of the molecule by using the refined grid, at a much lower cost the
aregular grid of 12% 127 x 127 nodes.

-43.30
-43.40 - .
I + - -+ grid 63 x 63 x 63

= o——= refined grid
€ 4350 | g ]
>
1=
[J]
o
ui

-43.60 |77+, g

N . . 5 ;*\ - ///
R g e T
\\ , e *
-43.70 | oo 1
1.90 2.00 2.10 2.20 2.30 2.40

Interatomic distance [bohr]

FIG.5. Ground state energy of the CO molecule computed on grids with and without refinement, as a fun
of the interatomic space.
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6. CONCLUDING REMARKS

In this paper we have shown the applicability of a collection of numerical techniqu
to electronic structure calculations problems. In particular we have shown that algorith
based on the inverse iteration, using multigrid techniques for the resolution of the lin
systems, can be very efficient. This has been done by applying the algorithm BGII
described above. Nevertheless some modifications can be considered in the methc
order to reduce the computational cost for very large systems.

The eigensolver presented here scaleg®as N (whereN denotes the number of nodes
on the grid andp is the number of searched eigenpairs) like most of the methods curren
used in this field to treat problems involving nonlocalized orbitals, i.e. systems with way
functions that are nonzero in the whole domain of computation. The bottleneck is in gen
the Galerkin part (or orthogonalization) which requires the computation of matrix eleme
associated to every pair of eigenvectors followed by an update of the different approxit
tions as alinear combination of twerial eigenvectors. But since the Rayleigh quotient-like
iterations drive naturally the eigenvector approximations to vectors contained in eigens
spaces, we can consider a future implementation of the BGII algorithm that would reqt
only the matrix elements between vectors associated to close or multiple eigenvalue:
least the ones associated to the vectors pairs contain%jdfinthe other ones converging
naturally to zero) and that would build the new vectors as linear combinations of a sn
number of vectors (see Eq. (11)). Such an approach could reduce drastically the co:
the method on systems much larger than the ones treated in this paper. Unfortunate
reduction of the asymptotic scaling of the method, when the number of eigenpairs beco
very large, is difficult to obtain. Indeed the density of the eigenvalues in the part of t
spectrum in which we are interested is likely to increase in this case and thus require
enlarge the dimension of the subspaﬁ’éﬂﬁ,l in order to keep the same conditioning of the
linear systems.

However, the present algorithm BGII has the advantage over the conjugate grad
(CG) like algorithms with simultaneous update of all the eigenfunctions [30] that it r
quires much less memory storage. In our implementation, when computing the corl
tion for the vectorj, we chose to store the vectoBy W), ... By Ui
defining the projectofiiﬁzl. In this case, the maximal number of vectors to store (for th
eigenfunctions and their corrections) at the same time is gmlgigenfunction approxi-
mations+ (max; («1(j) + @2(j)) + 1) functions defining the projectoss1 correction cur-
rently computed. Moreover, the optimal coefficient multiplying a correction before addil
it to the corresponding eigenvector (often called the time-step) is always 1 in BGII, wh
it can be expensive to compute in a CG approach or difficult to estimate (and very sm
in a steepest descent algorithm.

Finally, we mention that the BGIl method described in this paper has also been app
with success to the computation of the electronic structure afggenolecule [31], using
aregular grid of 7% 79 x 79 nodes, showing its applicability to problems involving more
than 100 eigenvalues.
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