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We present an original numerical method to discretize the Kohn–Sham equations
by a finite difference scheme in real-space when computing the electronic struc-
ture of a molecule. The singular atomic potentials are replaced by pseudopotentials
and the discretization of the 3D problem is done on a composite mesh refined in
part of the domain. A “Mehrstellenverfahren” finite difference scheme is used to
approximate the Laplacian on the regular parts of the grid. The nonlinearity of the
potential operator in the Kohn–Sham equations is treated by a fixed point algorithm.
At each step an iterative scheme is applied to determine the searched solutions of
the eigenvalue problem for a given fixed potential. The eigensolver is a block gen-
eralization of the Rayleigh quotient iteration which uses Petrov–Galerkin approx-
imations. The algorithm is adapted to a multigrid resolution of the linear systems
obtained in the inverse iterations. Numerical tests of the different algorithms are
presented on problems coming from the electronic structure calculation of some
molecules. c© 1999 Academic Press
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1. INTRODUCTION

Over the last years real-space methods have appeared in the domain of 3Dab initio
electronic structure calculations for numerically solving the Kohn–Sham (KS) equations
[1–10]. The main reason to replace the classical plane wave expansion of the orbitals by these
new discretization schemes is their local feature, allowing natural local mesh refinements
[7, 10] and efficient subdomains decompositions on massively parallel supercomputers
[4]. Moreover, this approach is more natural for nonperiodic systems. The computation
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of the kinetic energy associated to a wave function in real-space requires high-order finite
difference (FD) schemes. Such schemes can lead to wrong results if they involve nodes
too far from each other, in particular if they are applied to rapidly oscillating functions,
compared to the mesh spaces. The “Mehrstellenverfahren” finite difference schemes [11]
permit us to obtain higher orders by using nodes confined in a smaller volume than classical
schemes. In the case of the 3D Laplacian, order four formulas are available that involve
only the neighbor nodes confined in a cube of volume 2h× 2h× 2h (whereh denotes the
grid spacing) around the node considered, so allowing easier combination with local mesh
refinement and Dirichlet boundary conditions.

Discretization of the KS equations by FD, or finite elements methods, leads to large-scale
linear algebra eigenvalue problems requiring efficient iterative eigensolvers. In general,
the involved matrices are sparse and we are only interested in a small fraction of the
spectrum (the smallest eigenvalues) and the corresponding invariant subspace. In quantum
calculations, Davidson’s method [12, 13], a diagonal preconditioned Lanczos’ method, is
the most used because of the diagonal dominance of the matrices. Recently an improved
version has been proposed: the Jacobi–Davidson method [14]. The idea of these methods
is to generate in an adequate way a subspace of much smaller dimension than the space
in which the problem is defined, and then to process diagonalization in this subspace. The
dimension of these subspaces has to be larger than the number of searched eigenpairs and
could become prohibitively large on very large-scale eigenvalue problems, so that these
methods are not well designed for the resolution of the problems we encounter in quantum
chemistry when discretizing the equations with a large number of degrees of freedom.

The multigrid method [15, 16] is also a mathematical tool that has recently appeared
in different methods used for solving the KS equations [3–6, 9]. It drastically improves
the convergence rates of the classical iterative linear systems solvers by using coarse grid
approximations of the partial differential equation for solving. At the same time, it allows
us to use iterative methods for the eigenvalue problems like the Rayleigh quotient iteration
(RQI) method that could not be applied on large-scale problems without an efficient linear
systems solver.

In this paper we present a generalization of the method first described in [5]. We propose
a scheme to discretize and numerically solve the KS equations on a grid composed of two
regular grids, the coarser covering the whole domain and the finer having a mesh space two
times smaller and covering just the part of the domain where we want more precision. The
ionic potentials are represented by nonlocal pseudopotentials so that we do not have to deal
with singular potentials and core electrons [17]. We use the local density approximation
(LDA) model for the exchange and correlation potential. The discretized KS equations
are solved by a self-consistent (SC) iterative scheme in which, at every step, an eigenvalue
problem with fixed potential is solved by a block generalization of the RQI. One of the main
features of the method is that it avoids generating search subspaces (in which we diagonalize
the operator) of dimension larger than the number of desired eigenvalues. Moreover, it treats
simultaneously and in the same way all the search eigenpairs. The power of the multigrid
method is used to efficiently solve the indefinite linear systems resulting from the inverse
iteration equations present in the algorithm. Numerical tests of convergence of the multigrid
method and of the eigenvalue solver are presented in Section 5 on examples provided in the
case of the electronic structure calculation of the furan molecule.

The method described here includes the particular case of regular grids treated in [5]
and extend it to composite grids. In particular the multigrid algorithm is generalized to the
resolution of the linear systems obtained in the inverse iterations on the composite grids. The
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applications on which the algorithms are tested and applied are less academic and show the
applicability of the method to more general electronic structure calculations. In particular
we treat the furan molecule (C4OH4) with the ionic Bachelet–Hamman–Schlueter (BHS)
pseudopotentials introduced in [18]. More mathematical details can be found in [6].

2. FD SCHEME ON COMPOSITE GRID

For simplicity reasons, we choose to work in the cubic domainÄ= (0, L)× (0, L)× (0, L)
with homogeneous Dirichlet boundary conditions. The generalization to a parallelepiped
domain is straightforward. Let us first define a regular mesh on the domainÄ,

Ä` = {(ξ, η, ζ )∈Ä | ξ = ih`, η= jh`, ζ = kh`, 1≤ i, j, k ≤ n`}, (1)

defined for̀ ∈N, composed ofn3
` inner nodes, withn`=a·2`+1− 1, h`= L/(n`+ 1) being

the distance between nodes along the three axisξ, η, andζ , anda∈N fixed. In this paper, we
will always takea= 1. As in the multigrid literature,̀ designates the grid level. The grid are
indexed so that they contain more points as` increases. Implicitly (by not introducing any
nodes on∂Ä), we have imposed homogeneous Dirichlet boundary conditions, but periodic
ones could be chosen without main changes in the algorithms presented below. By analogy
with the notations inR3 we write

Ǟ`={(ξ, η, ζ )∈Ä | ξ = ih`, η= jh`, ζ = kh`, 0≤ i, j, k ≤ n` + 1}.
We denoteE` the finite dimensional vectorial space of the real functions defined onÄ`.

Let(i1, j1, k1)and(i2, j2, k2)be the coordinates of two nodes ofǞ` such that 0≤ i1< i2≤
n`+ 1, 0≤ j1< j2≤ n`+ 1, and 0≤ k1< k2≤ n`+ 1. We define the parallelepiped subdo-
mainω of Ä by

ω =
{
(ξ, η, ζ )∈Ä

∣∣∣∣(i1− 1

2

)
h` < ξ <

(
i2+ 1

2

)
h`,(

j1− 1

2

)
h` < η <

(
j2+ 1

2

)
h`,(

k1− 1

2

)
h` < ζ <

(
k2+ 1

2

)
h`

}
.

In this subdomain, we introduce the regular grids

ω` = Ä` ∩ ω,
ω`+1 = Ä`+1 ∩ ω,

whereÄ`+1 is defined by (1) with the index̀+ 1 instead of̀ . By analogy with the notations
in R3, we write

∂ω`+1 = Ä`+1 ∩ ∂ω,
ω̄`+1 = ω`+1 ∪ ∂ω`+1.

The composite mesĥÄ`+1 is then defined by the union of the two regular grids,

Ä̂`+1 = ω̄`+1 ∪Ä`.
We note that, ifÄ ⊂ ω, Ä̂`+1=Ä`+1 is a regular grid.
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FIG. 1. Composite grid with̀ = 2, i1= j1= k1= 3, i2= j2= k2= 5: (a)ζ = kh`, k≤ k1 ork≥ k2; (b)ζ = kh`,
k1≤ k≤ k2; (c) ζ = (k+ 1

2
)h`, k1≤ k< k2; (d) ζ = (k1− 1

2
)h` or ζ = (k2+ 1

2
)h`. Nodes:◦ : Ǟ`\ω`+1, ¯ :ω`+1∩

Ä`, • :ω`+1\Ä`,v : ∂ω(1)`+1, u : ∂ω(2)`+1,j : ∂ω(3)`+1.

Instead of introducing slave points on the interface between the refined(ω̄`+1) and non-
refined(Ä`\ω`) parts of the grid, we consider the composite mesh as a nonuniform grid
near the interface. So we are led to introduce nonuniform finite difference stencils at the
interface grid points contained in∂ω`+1 [19]. Note here that such an approach would
be much more difficult to put in practice with high order finite difference schemes in-
volving values on more distant nodes. We decompose∂ω`+1 in three disjoint subsets of
nodes,

∂ω`+1 = ∂ω(1)`+1 ∪ ∂ω(2)`+1 ∪ ∂ω(3)`+1,

to which we associate three specific stencils. These subsets are defined (see Fig. 1) as

∂ω
(1)
`+1 = {(ξ, η, ζ ) ∈ ∂ω`+1| (ξ ± h`+1, η, ζ ) ∈ Ä̂`+1,

(ξ, η ± h`+1, ζ ) ∈ Ä̂`+1,

(ξ, η, ζ ± h`+1) ∈ Ä̂`+1},
∂ω

(3)
`+1 = {(ξ, η, ζ ) ∈ ∂ω`+1| (ξ ± h`+1, η ± h`+1, ζ ± h`+1) ∈ Ä̂`+1},
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and

∂ω
(2)
`+1 = ∂ω`+1

∖{
∂ω

(3)
`+1 ∪ ∂ω(1)`+1

}
.

For each subset, we will define a finite difference operator for the Laplacian that is adapted
to the neighbor nodes available. Figure 1 shows views of the composite meshÄ̂`+1 on
planesζ = const for an example with̀= 2. We associate tôÄ`+1 the finite-dimensional
functional spacêE`+1 defined by

Ê`+1 =
{
v̂`+1 =

(
v̂
(1)
`+1, v̂

(2)
`+1, v̂

(3)
`+1, v̂

(4)
`+1, v̂

(5)
`+1

) ∣∣ v̂(1)`+1 : Ä`\ω`→ R,

v̂
(2)
`+1 : ω`+1→ R,

v̂
(3)
`+1 : ∂ω(1)`+1→ R,

v̂
(4)
`+1 : ∂ω(2)`+1→ R,

v̂
(5)
`+1 : ∂ω(3)`+1→ R

}
.

It is easy to see that it is isomorphic to the finite-dimensional vectorial space of the real
functions defined on̂Ä`+1. In the following, we will not distinguish between them. We will
use the scalar product(., .)̂̀+1

between two functionŝu`+1 andv̂`+1 ∈ Ê`+1, defined by

(û`+1, v̂`+1)̂̀+1
= h3

`

∑
x∈(Ä`\ω`)

û`+1(x)v̂`+1(x)+ h3
`+1

∑
x∈ω̄`+1

û`+1(x)v̂`+1(x), (2)

which is a consistent approximation of the integral
∫
Ä

u(x)v(x) dx if û`+1(x)= u(x) and
v̂`+1(x)= v(x) for x ∈ Ä̂`+1.

The tools are now ready to introduce a FD scheme for the Laplacian on the composite
grid Ä̂`+1. It is based on a “Mehrstellenverfahren” scheme of order 4 in the regular parts of
the grid(Ä`\ω` andω`+1) and on specific schemes of order 2 on the nodes∂ω`+1. In this
purpose, we define the discrete operatorsĈ`+1 and B̂`+1 by their action on̂u`+1∈ Ê`+1,

Ĉ`+1û`+1 =
(
ĉ(1)`+1, ĉ

(2)
`+1, ĉ

(3)
`+1, ĉ

(4)
`+1, ĉ

(5)
`+1

)
, (3)

where

ĉ(1)`+1(x0) = 1

6h2
`

24û`+1(x0)− 2
∑
x∈Ä`‖x−x0‖=h`

û`+1(x)−
∑
x∈Ä`

‖x−x0‖=
√

2h`

û`+1(x)


for x0∈ (Ä`\ω`),

ĉ(2)`+1(x0) = 1

6h2
`+1

24û`+1(x0)− 2
∑

x∈ω̄`+1
‖x−x0‖=h`+1

û`+1(x)−
∑

x∈ω̄`+1

‖x−x0‖=
√

2h`+1

û`+1(x)


for x0∈ω`+1,

ĉ(3)`+1(x0) = 1

h2
`+1

6û`+1(x0)−
∑

x∈Ä̂`+1
‖x−x0‖=h`+1

û`+1(x)


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for x0∈ ∂ω(1)`+1,

ĉ(4)`+1(x0) = 1

2h2
`+1

8û`+1(x0)− 2
∑

x∈∂ω(3)
`+1

‖x−x0‖=h`+1

û`+1(x)−
∑
x∈Ä`

‖x−x0‖=
√

2h`+1

û`+1(x)


for x0∈ ∂ω(2)`+1,

ĉ(5)`+1(x0) = 1

4h2
`+1

8û`+1(x0)−
∑
x∈Ä`

‖x−x0‖=
√

3h`+1

û`+1(x)


for x0∈ ∂ω(3)`+1, while

B̂`+1û`+1 =
(
b̂(1)`+1, b̂

(2)
`+1, b̂

(3)
`+1, b̂

(4)
`+1, b̂

(5)
`+1

)
, (4)

where

b̂(1)`+1(x0) = 1

72

48û`+1(x0)+ 2
∑
x∈Ä`‖x−x0‖=h`

û`+1(x)+
∑
x∈Ä`

‖x−x0‖=
√

2h`

û`+1(x)


for x0∈ (Ä`\ω`),

b̂(2)`+1(x0) = 1

72

48û`+1(x0)+ 2
∑

x∈ω̄`+1
‖x−x0‖=h`+1

û`+1(x)+
∑

x∈ω̄`+1

‖x−x0‖=
√

2h`+1

û`+1(x)


for x0∈ω`+1,

b̂(3)`+1(x0) = û`+1(x0) for x0∈ ∂ω(1)`+1,

b̂(4)`+1(x0) = û`+1(x0) for x0∈ ∂ω(2)`+1,

b̂(5)`+1(x0) = û`+1(x0) for x0∈ ∂ω(3)`+1.

If Ä̂`+1 6=Ä`+1, the operatorŝC`+1 andB̂`+1 are not symmetric, but neverthelessB̂`+1 is
well conditioned, in contrast to the less expensive “Mehrstellenverfahren” finite difference
scheme used in [4], even for periodic boundary conditions. Moreover, both operators can be
represented by sparse matrices. The operatorsĈ`+1 and B̂`+1 have been designed in order
that we obtain, foru∈C6(Ǟ), u= 0 on∂Ä [6],

(Ĉ`+1u)(x0) = (B̂`+1(−1u))(x0)+ O
(
hκ`
)

(5)

with κ = 4 for x0∈ (Ä` ∪ ω`+1) and κ = 2 for x0∈ ∂ω`+1. It means that on the nodes
of ∂ω`+1, the finite difference schemes give the order 2, while on the other nodes the
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“Mehrstellenverfahren” schemes using all the nodesx such that‖x − x0‖≤
√

2h`+1 give
the order 4.

Let us begin by applying the discretization scheme described above to the Poisson
problem: {

(−1v)(x) = 4πρ(x), x ∈Ä
v(x) = 0, x ∈ ∂Ä. (6)

We discretize this equation on the composite meshÄ̂`+1 using the finite difference scheme
(5). So we have to look for a solution ˆv`+1∈ Ê`+1 of the equation

Ĉ`+1v̂`+1 = 4π B̂`+1ρ̂`+1, (7)

where ˆρ`+1∈ Ê`+1 is defined by ˆρ`+1(x)= ρ(x) for x ∈ Ä̂`+1. Using standard finite differ-
ence theory (see [20] for example), we easily obtain a convergence result for this scheme. If
we assume that Eq. (6) has a unique solutionu whose regularity isC2+κ(Ä), κ = 1, 2, then
the maximum of the error between the discrete solutionû`+1 of (7) and the exact solution
u is O(hκ` ).

We note that the number of nodes on the boundary∂ω`+1 is small(O(n2
`)), compared to

the total number of nodes(O(n3
`))on the whole mesh. We therefore expect to have globally a

convergence of order larger than 2. But more important is the fact that the solutions computed
on the gridÄ̂`+1 will exhibit an error of same magnitude as the solutions computed onÄ`+1

(see Section 5). This method will be used in the SC resolution of the KS equations to define
the Hartree potential, solution of a Poisson problem.

Our purpose is to discretize the KS equations [21] (in Rydberg units)

HKS9( j ) = −19( j ) + VKS9( j ) = ε( j )9( j ), j = 1, . . . , p,

where1 designates the Laplacian operator inR3, andε(1)≤ · · · ≤ ε(p) < · · · are the small-
est eigenvalues.VKS is the potential operator composed of the Hartree (Coulomb interac-
tions), exchange and correlation, and pseudopotential terms. It is nonlinear because of the
dependence of the two first terms on the electronic density

ρ(x) =
p∑

j=1

2
∣∣9( j )(x)

∣∣2.
The factor 2 accounts for the electronic occupation numbers assumed to be all equal. We
work with the exchange and correlation potential given by the local density approximation
(LDA) model and describe the ions by the BHS nonlocal pseudopotentials given in [18].

If we assume that a regular gridÄ`+1 is fine enough on the whole domain to obtain a good
approximation of the solutions of the KS problem, we will replace this one by a composite
grid Ä̂`+1 in order to decrease the number of nodes outside ofω, where the solutions are
very smooth and regular. If̀andω are well chosen, the solutions obtained should be almost
the same usingÄ`+1 or Ä̂`+1 (see Section 5), but much less expensive to compute on the
composite mesh.

The discretized problem on̂Ä`+1 consists in looking for thep smallest eigenvalues ˆε
( j )
`+1,

ε̂
(1)
`+1 ≤ ε̂(2)`+1 ≤ · · · ≤ ε̂(p)`+1 and thep corresponding eigenfunctionŝ9( j )

`+1, j = 1, 2, . . . , p,
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solutions of the eigenvalue problem

B̂−1
`+1ĤKS

`+1[ρ̂`+1]9̂( j )
`+1 = ε̂( j )

`+19̂
( j )
`+1, (8i)

ρ̂`+1(x) =
p∑

j=1

2
∣∣9̂( j )

`+1(x)
∣∣2, x ∈ Ä̂`+1, (8ii)

(
9̂
( j )
`+1, 9̂

( j )
`+1

)̂̀+1
= δi j , i = 1, . . . , p (8iii)

whereĤKS
`+1[ρ̂`+1]= Ĉ`+1 + B̂`+1V̂`+1[ρ̂`+1]. Using the BHS nonlocal pseudopotentials

[18], V̂`+1 can be defined by its action on a functionû`+1∈ Ê`+1 which can be written in
the form

(V̂`+1[ρ̂`+1]û`+1)(x)= v[ρ̂`+1](x)û`+1(x)+
s̄∑

i=1

(
φ̂
(i )
`+1, û`+1

)̂̀+1
φ̂
(i )
`+1(x) (9)

for x ∈ Ä̂`+1, wherev is the local part of the potential and̂φ(i )`+1, i = 1, . . . , s̄, are radial
functions, each one centered on one atom and decreasing very rapidly to zero far from this
atom.

If Ä ⊂ ω, the eigenvalue problem (8) is symmetric so that the eigenvalues are real and the
eigenfunctions can be chosen real and orthogonal. If ˆε

(p+1)
`+1 > ε̂

(p)
`+1, the problem (8) is then

mathematically well defined. But if the refinement does not cover the whole domain, the
operatorB̂−1

`+1ĤKS
`+1 is not symmetric in general. Nevertheless, if the composite grid is fine

enough to well describe the searched eigenfunctions, what should be the case in practice by
the choice ofω, the computed solutions are almost the same onÄ̂`+1 orÄ`+1 (see Section 5)
so that we can expect the eigenvalues ˆε

( j )
`+1 being real and the eigenfunctions being inÊ`+1.

In the following we will assume it is like this and the orthogonality will be imposed only
for the eigenfunctions associated to multiple eigenvalues. Actually the departure from this
assumed ideal case is only due to the discretization error, the nondiscretized operator being
symmetric.

3. BGII ALGORITHM FOR SOLVING THE EIGENVALUE PROBLEM

We propose to treat the nonlinear problem (8) by a classical relaxed fixed point algorithm
also called self-consistent (SC) iteration. One step consists in solving the eigenvalue problem
(8) for a fixed operator̂B−1

`+1ĤKS
`+1, that is a fixed potential̂Vold

`+1. The solution of this problem
defines a new density ˆρnew

`+1. Then the operator̂HKS
`+1 is updated, replacing the potentialV̂old

`+1

by a linear mixing ofV̂old
`+1 andV̂`+1[ρ̂new

`+1]. Iterations are performed until self-consistency
is achieved. That is until the difference betweenV̂old

`+1 and V̂`+1[ρ̂new
`+1] is smaller than a

given tolerance. The purpose of the block Galerkin inverse iteration (BGII) algorithm we
describe below is to solve efficiently the eigenvalue problem with linear operator (fixed
potential) at each step of the SC scheme.

Let us assume that we know a good approximationV̂`+1 of the p-dimensional subspace
Û `+1 spanned by thep searched eigenfunctionŝ9( j )

`+1 on the refined grid̂Ä`+1 for a given
potentialV̂`+1. We want to improvêV`+1 by a generalization of the RQI method. First of all
we compute good initial eigenpairs for the process by performing a subspace diagonalization
of B̂−1

`+1ĤKS
`+1 in V̂`+1. In order not to have to invert̂B`+1, this is done by applying the Petrov–

Galerkin method (see, for example, [22]) withV̂`+1 as the right subspace and̂B∗`+1V̂`+1
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as the left subspace, where the exponent∗ indicates we take the adjoint of the operator. It
means that if the approximate subspace is spanned byp linear independent functions,

V̂`+1= span
{
v̂
(1)
`+1, . . . , v̂

(p)
`+1

}
,

we have to solve thep-dimensional matrix eigenvalue problems

Gw( j ) = θ( j )Mw( j ), (10)

where the matrix elements are given by

Gik =
(
B̂∗`+1v̂

(i )
`+1, B̂−1

`+1ĤKS
`+1v̂

(k)
`+1

)̂̀+1
= (v̂(i )`+1, ĤKS

`+1v̂
(k)
`+1

)̂̀+1
,

Mik =
(
B̂∗`+1v̂

(i )
`+1, v̂

(k)
`+1

)̂̀+1
= (v̂(i )`+1, B̂`+1v̂

(k)
`+1

)̂̀+1
.

In general, if the subspacêV`+1 is not invariant, the matrixM−1G is not symmetric so
that the eigenvaluesθ( j ) can be complex. In order to only work with real numbers, we have
to take it into account. Ifθ( j ) is real we simply choose

ε̃
( j )
`+1 = θ( j )

and define the new approximation of thej th eigenfunction as

9̃
( j )
`+1 =

p∑
k=1

(
w( j )

)
kv̂
(k)
`+1, (11)

where(w( j ))k is thekth component ofw( j ). If the eigenvaluesθ( j ) andθ( j+1) are complex
conjugate, i.e.θ( j )= θ( j+1), we notew( j )±i w( j+1) the associated eigenvectors—as returned
by the LAPACK routine DGEEV [23] used to solve (10). In that case we treat the two vectors
w( j ) andw( j+1) as two basis vectors of a two-dimensional eigensubspace associated to a
double eigenvalue Re(θ ( j )).

To improve the trial subspacêV`+1, we use the generalized inverse iteration reported in
[5]. For the problem (8), a classical RQI iteration [24] can be written for the eigenpairj ,

(
B̂−1
`+1ĤKS

`+1− ε̃( j )
`+1

) 1

ξ ( j )

(
9̃
( j )
`+1+ δ9̃( j )

`+1

) = 9̃( j )
`+1, (12)

whereδ9̂( j )
`+1, the correction to add tõ9( j )

`+1, is chosen to be orthogonal tõ9( j )
`+1 for the scalar

product(·, B̂`+1.)̂̀+1
, andξ ( j ) is a real coefficient. Let us define the subspace

V̂ ( j )
`+1 = span

{
9̃
( j−α1( j ))
`+1 , . . . , 9̃

( j+α2( j ))
`+1

} ⊂ Ê`+1

for α1( j ) andα2( j ) integers given by

α1( j ) = max
1≤i≤ j,ε̃( j )

`+1−ε̃(i )`+1≤δ
j − i,

(13)
α2( j ) = max

j≤i≤p,ε̃(i )
`+1−ε̃( j )

`+1≤δ
i − j
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for a chosen parameterδ ∈R. If we multiply (12) by B̂`+1, then project both sides of the
equation onto the subspace(B̂`+1V̂ ( j )

`+1)
⊥ and restrict its solution to be in the same subspace

(B̂`+1V̂ ( j )
`+1)

⊥, we obtain a new equation forδ9̂( j )
`+1∈ (B̂`+1V̂ ( j )

`+1)
⊥,

Q̃( j )
`+1

(
ĤKS
`+1− ε̃( j )

`+1B̂`+1
)
δ9̂

( j )
`+1 = −Q̃( j )

`+1

(
ĤKS
`+1− ε̃( j )

`+1B̂`+1
)
9̃
( j )
`+1, (14)

where Q̃( j )
`+1 is the orthogonal projector onto(B̂`+1V̂ ( j )

`+1)
⊥. Equations (12) and (14) are

equivalent ifα1( j )=α2( j )= 0. In this case the iterative scheme defined by9̃
( j )
`+1← 9̃

( j )
`+1+

δ9̂
( j )
`+1, j = 1, . . . , p, with δ9̂( j )

`+1 the solution of (14), is the classical RQI iteration. But
the linear systems can be singular or very ill-conditioned if we have multiple or close
eigenvalues. As pointed out by Hackbusch [16], it is important to have a well-posed problem
for the multigrid resolution we have in view (see Section 4). Within our formulation, the
largerδ is chosen, the more the linear system defined by (14) is well-conditioned.

Combining the PG method and the generalization (14) of the inverse iteration, we define
the following algorithm.

ALGORITHM BGII.

(a) Compute(ε̃( j )
`+1, 9̃

( j )
`+1)∈R× Ê`+1, j = 1, . . . , p, by resolution of the PG problem

(10) in V̂`+1.
(b) Compute the solutionδ9̂( j )

`+1 of Eq. (14) for j = 1, . . . , p.

(c) Compute ˆv( j )
`+1= 9̃( j )

`+1+ δ9̂( j )
`+1, j = 1, . . . , p.

(d) Compute(ε̃( j )
`+1, 9̃

( j )
`+1)∈R× Ê`+1, j = 1, . . . , p, by resolution of the PG problem

(10) in V̂`+1.
(e) Test for convergence. Goto (b) if not satisfied.

At step (e), we check for the convergence by evaluating the norm of the residuals

r̂ ( j )
`+1 =

(
Â`+1− ε̃( j )

`+1B̂`+1
)
9̃
( j )
`+1, j = 1, . . . , p. (15)

It can be shown in the Galerkin case, i.e. when the left subspace is chosen to beV̂ ( j )
`+1 instead

of B̂`+1V̂ ( j )
`+1 and whenB̂−1

`+1ĤKS
`+1 is symmetric, that the convergence of that algorithm is

locally quadratic, provided that the starting subspace is sufficiently accurate [25].

4. MULTIGRID METHOD

At step (b) of the BGII algorithm, we need an efficient tool to solve the linear systems.
In this purpose we propose a multigrid method adapted to the composite grids. Let us
first describe the idea of the multigrid algorithm for the resolution of a Poisson problem
discretized onÄ̂`+1. Assume we know some approximation ˜v`+1 of the solution ˆv`+1 of
Eq. (7). Let us define the defect

d̂`+1 = Ĉ`+1ṽ`+1− 4π B̂`+1ρ̂`+1∈ Ê`+1. (16)

To describe a multigrid iteration, we introduce the grid transfer operatorsR̂`+1 : Ê`+1→ E`,
an operator of weighted restriction, andP̂` : E`→ Ê`+1, an operator of prolongation. Instead
of solving Eq. (7) directly, we look for an iterative solution of the equation with the defect



FD AND RQI FOR ELECTRONIC CALCULATIONS 85

as a right-hand side,

Ĉ`+1ẑ`+1 = d̂`+1, (17)

starting fromẑ`+1 ≡ 0 and updating ˆv`+1= v̂`+1− ẑ`+1 andd̂`+1 after each correction.
To do this we write an algorithm based on the strategy proposed in [16, Section 15.2].

The main difference comes from the way to deal with the nodes on the interface between
the refined and nonrefined parts ofÄ̂`+1. A heuristic justification of the method is based on
a decomposition of̂z`+1 in components of “high frequency” and “low frequency” (relative
to the gridÄ`). The “low frequency” components are those we can represent onÄ`, while
the “high frequency” components are functions inÊ`+1 which need a finer grid to be well
represented and whose nonzero values are localized inω by definition ofÊ`+1. The former
will be reduced by solving a coarse grid approximation of Eq. (17) corresponding to a
problem without refinement,

C`z` = R̂`+1d̂`+1. (18)

The latter will be reduced by a smoothing process applied to Eq. (17) restricted to the
subspaceEω`+1 ⊂ Ê`+1 of the functions whose values are zero outside of ¯ω`+1,

5ω
`+1Ĉ`+1z(ω)`+1 = 5ω

`+1d̂`+1,
(19)

z(ω)`+1 ∈ Eω`+1.

Here5ω
`+1 : Ê`+1→ Eω`+1 denotes the orthogonal projector from̂E`+1 ontoEω`+1.

By analogy with a standard multigrid V-cycle, we write the algorithm in the following
form

TWO-GRID ALGORITHM FOR THEPOISSONPROBLEM

(a) Performν1 presmoothing iterations on Eq. (19).
(b) Update ˜v`+1← ṽ`+1− z(ω)`+1 andd̂`+1.
(c) Solve the coarse grid equation (18).
(d) Update ˜v`+1← ṽ`+1− P̂`z` andd̂`+1.
(e) Performν2 postsmoothing iterations on Eq. (19).
(f) Updateṽ`+1← ṽ`+1− z(ω)`+1 andd̂`+1.

This algorithm can be generalized to more than two levels by solving the coarse grid
problem at step (c) with a classic multigrid V-cycle, i.e. the same algorithm for the particular
caseÄ⊂ω. Numerical results show that the rate of convergence is the same if the finer grid
is composite or regular (i.e. refined everywhere) [6].

Remark 4.1. Since the values on all the nodes are defined by the unique solution of
the Poisson’s equation discretized on the composite grid (and not by some extension of
the solutions of a Poisson’s equation on the coarse grid), we do not need to ensure that the
equation on the coarse grid to be conservative as in [26]. Here the use of a global coarse
grid and a local fine grid are just tools to solve efficiently the problem on the composite
grid.

We will solve iteratively the generalized inverse iteration equation (14) for a givenj
by an algorithm similar to the one presented for the Poisson problem, i.e. by combining



86 JEAN-LUC FATTEBERT

corrections coming from “local smoothing” and “coarse grid corrections.” Starting from an
approximationδ9̃( j )

`+1∈ (B̂`+1V̂ ( j )
`+1)

⊥ of δ9̂( j )
`+1, the search solution of (14), let us define the

defect

d̂( j )
`+1 =

(
ĤKS
`+1− ε̃( j )

`+1B̂`+1
)(
9̃
( j )
`+1+ δ9̃( j )

`+1

)
. (20)

We look for ẑ( j )
`+1∈ (B̂`+1V̂ ( j )

`+1)
⊥ such that

δ9̂
( j )
`+1 = ẑ( j )

`+1+ δ9̃( j )
`+1, (21)

starting from the approximation̂z( j )
`+1≡ 0. We defineQ( j,R)

` : E`→ (R̂`+1B̂`+1V̂ ( j )
`+1)

⊥ the
orthogonal projector onto(R̂`+1B̂`+1V̂ ( j )

`+1)
⊥. The functionz( j )

` ∈ (R̂`+1B̂`+1V̂ ( j )
`+1)

⊥, solu-
tion of the equation

Q( j,R)
`

(
HKS
`+1− ε̃( j )

`+1B`
)
z( j )
` = −Q( j,R)

` R̂`+1d̂( j )
`+1 (22)

can be considered as a coarse grid correction for a multigrid resolution of (14) by the update
δ9̃

( j )
`+1← Q̃

( j )
`+1P̂`z

( j )
` + δ9̃( j )

`+1. As before, “high frequency” components are supposed to
be localized inω. By first restricting the RQI equation (12) multiplied bŷB`+1 to Eω`+1 and

then introducing an orthogonal projectorQ̃( j,ω)
`+1 : Eω`+1→ W̃ ( j,ω)

`+1 onto the subspace

W̃ ( j,ω)
`+1 = Eω`+1 ∩

(
B̂`+1V̂ ( j )

`+1

)⊥
, (23)

in the same way as for the problem on the whole grid, we obtain an equation forz( j,ω)
`+1 ∈

W̃ ( j,ω)
`+1 :

Q̃( j,ω)
`+1 5

ω
`+1

(
ĤKS
`+1− ε̃( j )

`+1B̂`+1
)
z( j,ω)
`+1 = −Q̃( j,ω)

`+1 5
ω
`+1d̂( j )

`+1. (24)

Smoothing on this equation will provide a fine grid correctionz( j,ω)
`+1 to add toẑ( j )

`+1. In
Eq. (24), the operator is not positive definite and can be singular, unlike the operator on the
whole composite grid. Nevertheless it will not be a problem if we only apply smoothing
iterations on it with GMRES [27]. We verify that the action of the projectorQ̃( j,ω)

`+1 5
ω
`+1 on

a functionû`+1 in Ê`+1 consists in restrictinĝu`+1 to ω̄`+1, then subtracting its projection
onto the subspace spanned by the functions ofB̂`+1V̂ ( j )

`+1 restricted to ¯ω`+1, and finally
extending the function obtained tôÄ`+1 with value zero outside of ¯ω`+1. The coarse and
fine grid corrections described above are combined in the following algorithm:

TWO-GRID ALGORITHM FOR THEKS EQUATION

(a) Performν1 GMRES iterations on equation (24) starting fromz( j,ω)
`+1 = 0.

(b) Updateδ9̃( j )
`+1← δ9̃

( j )
`+1+ z( j,ω)

`+1 andd̂( j )
`+1.

(c) Solve the coarse grid equation (22).
(d) Updateδ9̃( j )

`+1← δ9̃
( j )
`+1+ Q̃

( j )
`+1P̂`z

( j )
` andd̂( j )

`+1.
(e) Performν2 GMRES iterations on equation (24) starting fromz( j,ω)

`+1 = 0.
(f) Updateδ9̃( j )

`+1← δ9̃
( j )
`+1+ z( j,ω)

`+1 andd̂( j )
`+1.

This two-grid algorithm can be generalized to a multigrid algorithm by applying recur-
sively the same method for solving the coarse grid problem (caseÄ⊂ω). In this case, the
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projector5ω
`+1 is equal to the identity, while the shifts ˜ε

( j )
`+1 and the projectorsQ̃

( j )
`+1 are

defined by the eigenpairs solutions of the stationary Schr¨odinger problem on the corre-
sponding grid with the potential defined by a restriction of the one used on the finest grid.
We note that ifω is a cube whose side length isL/2 (L being the length of the side ofÄ)
the cost of one local smoothing iteration on the gridÄ̂`+1 is almost the same as the cost of
one smoothing iteration onÄ`. But it is about two times cheaper that one iteration on the
whole composite grid̂Ä`+1 and eight times cheaper that one iteration on a gridÄ`+1 (i.e.,
refined everywhere).

5. NUMERICAL TESTS OF CONVERGENCE

The whole resolution of the problem (8) by the proposed algorithm involves three levels
of iterations: SC, BGII, and the multigrid method for the resolution of the linear systems
in the inverse iterations. Here we are primarily concerned with the BGII and multigrid
parts of the method, the original ones. A local quadratic convergence rate can be proved
for the BGII algorithm when the linear systems are solved exactly and when the Petrov–
Galerkin process is replaced by a Galerkin one (i.e., usingV̂`+1 as the left subspace) for a
symmetric operator̂B−1

`+1ĤKS
`+1, but theoretical convergence rates are difficult to obtain for

the multigrid resolution of the linear systems such as Eq. (14). Nevertheless the efficiency
of these two algorithms in practical problems can be assessed by isolating the different
parts of the method and measuring their convergence numerically. This has be done on
problems appearing in the electronic structure calculation of molecules with the proposed
method.

The first example we present is the furan molecule (C4OH4) discretized on a grid̂Ä6,
whereÄ is a cell of side 15 Bohr radii andω is a cell of side 8 Bohr centered inÄ. (One
Bohr radius is approximately 0.529̊A) This problem involves the self-consistent search
of 13 eigenfunctions. The whole calculation of the electronic structure of the molecule
for given atomic positions (as given in [28]) is made by using the coarser grids to initiate
the functions and potentials. The initial approximations of the eigenfunctions and of the
nonlinear potential on a given grid are obtained by extension of the ones obtained on
the previous coarser grid, after applying a first PG process that also furnishes the initial
eigenvalues (or shifts). If these approximate eigenfunctions are too far from the solutions
corresponding to the starting potential, a block variant of the Jacobi–Davidson method
is applied for the first SC step. This is avoided in the next SC steps by controlling the
variation of the potential (keeping it relatively small) and using the last computed solutions
as starting vectors. Figure 2 shows the convergence of the total energyE[{9( j )}] of the
molecule, during the computation on the successive gridsÄ4, Ä5, andÄ̂6. The convergence
criterion on each grid is the relativeL2 norm of the variation of the nonlinear part of the
potential (Hartree and exchange-correlation parts). In the present example, it has been fixed
to 10−3. Here, only one BGII iteration is applied in a SC step. In Table I, we give the
eigenvalues and some energies obtained on the gridsÄ4, Ä5, andÄ̂6, the ones we use in the
multigrid algorithm. They are compared to numerical values obtained for the same model
with a different method.EGS denotes the ground state energy of the system andEcin the
kinetic energy of the electrons.

In order to investigate its convergence rate, the two-grid algorithm for the KS equation
defined in Section 4 is applied for the resolution of linear problems like (14). Numerical
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FIG. 2. Relative error on the energyE[{9( j )}] as a function of SC iterations during the ground state search
on the three finest grids used in the calculation.

experiments are performed using operators obtained in the electronic structure calculation
of the furan molecule when using BGII, between two SC iterations. The solutions of the
linear problems are chosen a priori with values chosen randomly onÄ̂6 and define the
right-hand side for the tests. The coarse grid problems onÄ5 are approximately solved by
the same two-grid algorithm. For the tests, we use very accurate solutions for the coarse

TABLE I

Eigenvalues and Energies of the Furan Molecule as Obtained from Our

Computation on Different Grids

Ä4 Ä5 Ä̂6 [29]

ε(1) −2.644 −2.028 −2.055 −2.041
ε(2) −1.801 −1.444 −1.452 −1.439
ε(3) −1.281 −1.351 −1.356 −1.342
ε(4) −1.157 −1.086 −1.089 −1.075
ε(5) −1.001 −1.016 −1.019 −1.005
ε(6) −0.942 −0.978 −0.982 −0.969
ε(7) −0.926 −0.829 −0.828 −0.814
ε(8) −0.784 −0.795 −0.795 −0.782
ε(9) −0.762 −0.722 −0.723 −0.710
ε(10) −0.687 −0.712 −0.712 −0.699
ε(11) −0.578 −0.657 −0.660 −0.646
ε(12) −0.370 −0.518 −0.516 −0.502
ε(13) −0.367 −0.423 −0.423 −0.411
Ecin 107.31 65.231 64.022 63.970
EGS −94.042 −82.500 −82.251 −82.268
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FIG. 3. Convergence of the error for the multigrid resolution of linear systems appearing in the electronic
structure calculation of the furan molecule by BGII, for different eigenpairs of indicesj . The norm of the error is
plotted as a function of the number of cycles of the algorithm.

grid problem onÄ4. But in practice, the resolution of the problem on the coarsest grid
(31× 31× 31) is not trivial. However, an approximate solution obtained after a limited
number of GMRES iterations(∼20) is in general sufficient. We so apply a tri-grid algorithm.
Indeed we observed that the employ of coarser grids for the potentials we use damage the
convergence rate. Figure 3 shows the norm of the error after each cycle. The indexj
indicates to which eigenvalue are related the shift and projector used in the operators. For
the BGII algorithm we report in Fig. 4 the minimum, maximum, and mean values of the
norm of the residuals, as defined in Eq. (15), measured on the 13 simultaneously computed
eigenpairs, for initial approximations and potential obtained between two SC iterations of
the whole calculation. In this test, the linear systems obtained in the inverse iteration part
of the algorithm are only approximately solved by two cycles of the two-grid algorithm
(with ν1= ν2= 2). Note that all the results for the furan molecule have been obtained using
a coefficientδ= 0.1[Ry] in (13), leading to subspacesV̂ ( j )

`+1 of dimension between 1 and 4
(see Table I).

A good way to check the accuracy of the discretization scheme proposed in this paper is
to compute the electronic structure of a single atom and to compare the numerical results
with a calculation using the same model (LDA) and pseudopotentials (BHS), but solving
the radial equations in the spherical approximation (for an equidistribution of the electrons
in the highest occupied orbitals). That way, we have a very precise estimation of the results
we try to reproduce in our 3D calculation. Actually, the only differences between the
two approaches for fully converged results are the boundary conditions. In Table II, we
present the results obtained for the oxygen atom, an element which requires a very fine
discretization. We can observe the good agreement between the results obtained on a grid
127× 127× 127(Ä6) and a grid 63× 63× 63 refined in the center (Ä̂6).
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FIG. 4. Illustration of the convergence of the residuals for the BGII algorithm. The convergence is evaluated
for an eigenvalue problem with fixed potential between two SC iterations in the electronic structure calculation
of the furan molecule. In the inverse iterations, the linear systems are approximately solved by two cycles of the
multigrid algorithm withν1= ν2= 2.

As an example of the agreement between the eigenfunctions computed on regular and
refined grids, we show in Table III the results obtained for the silicon atom without interac-
tion between electrons. Actually, we look at the first eigenpair of a stationary Schr¨odinger
problem with the silicon atom pseudopotential. In this case, the single eigenfunction com-
puted on different grids can be compared.I`+1 : E`+1→ E`, `= 4, 5, denotes the restriction
operator defined by(I`+1v`+1)(x)= v`+1(x), x ∈Ä`, v`+1∈ E`+1, andÎ 6 : E6→ Ê6, denotes
the restriction operator defined by( Î 6v6)(x)= v6(x), x ∈ Ä̂6, v6∈ E6.

To show the importance of the grid refinement when looking for the equilibrium positions
of the atoms in a molecule, we present and compare in Fig. 5 the ground-state energy of the

TABLE II

Numerical Results for the Oxygen Atom (in Rydberg), Centered in a Cubic CellΩ of

Dimensions (12 Bohr)3, for Different Discretization Grids, Compared to a Result Obtained

for the Radial Problem (1D) for the Same Model (LDA + Oxygen BHS Pseudopotential). The

Refinement Domain is a Cube of Dimensions (6 Bohr)3 Centered on the Ion

Ä4 Ä5 Ä̂6 Ä6 Radial

ε(1) −1.87774 −1.72484 −1.74379 −1.74345 −1.74645
ε(2) −0.62944 −0.67738 −0.67299 −0.67266 −0.67409
ε(3) −0.62944 −0.67738 −0.67299 −0.67266 −0.67409
ε(4) −0.62944 −0.67738 −0.67299 −0.67266 −0.67409
EGS −31.0485 −31.6008 −31.4994 −31.4989 −31.4936
Ecin 21.0788 24.0349 23.5281 23.5286 23.4697
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TABLE III

First Eigenvalue Obtained for the Pseudopotential of a Silicon Atom without Any Interaction

Between Electrons, and Comparison of the First Eigenfunction (Normalized) Obtained on the

Grids Ω4, Ω5, Ω̂6, Ω6

ε
(1)
4 ε

(1)
5 ε

(1)
6 ε̂

(1)
6 ε(1)(1D)

−3.32311963 −3.31844813 −3.31823856 −3.31823816 −3.318226

‖u(1)4 − I5u
(1)
5 ‖4 ‖u(1)5 − I6u

(1)
6 ‖5 ‖û(1)6 − Î 6u

(1)
6 ‖5

4.8e-03 2.3e-04 4.1e-06

CO molecule for different interatomic distances obtained on a regular grid and on a refined
grid. The computation has been performed in a cubic cell of side 16 Bohr, using a regular
grid of 63× 63× 63 nodes. The refinement has been done in a cube of side 8 Bohr, centered
in the cell. For the computation without refinement, we observe the presence of two local
minimas, separated by a distance close to the grid spacingh63= 0.25 Bohr, manifesting a
lack of translational invariance. The same phenomena has been observed in [7] for the CO2

molecule. The introduction of the mesh refinement corrects this problem and the regular
curve obtained has a single minima we can estimate by a quadratic fit to be at 2.129 Bohr.
This value is very close to the value obtained in [7] (2.132 Bohr) with the same model (LDA
and BHS pseudopotentials). The results clearly show the improvement in the determination
of the ground state of the molecule by using the refined grid, at a much lower cost that on
a regular grid of 127× 127× 127 nodes.

FIG. 5. Ground state energy of the CO molecule computed on grids with and without refinement, as a function
of the interatomic space.
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6. CONCLUDING REMARKS

In this paper we have shown the applicability of a collection of numerical techniques
to electronic structure calculations problems. In particular we have shown that algorithms
based on the inverse iteration, using multigrid techniques for the resolution of the linear
systems, can be very efficient. This has been done by applying the algorithm BGII as
described above. Nevertheless some modifications can be considered in the method in
order to reduce the computational cost for very large systems.

The eigensolver presented here scales asp2× N (whereN denotes the number of nodes
on the grid andp is the number of searched eigenpairs) like most of the methods currently
used in this field to treat problems involving nonlocalized orbitals, i.e. systems with wave-
functions that are nonzero in the whole domain of computation. The bottleneck is in general
the Galerkin part (or orthogonalization) which requires the computation of matrix elements
associated to every pair of eigenvectors followed by an update of the different approxima-
tions as a linear combination of thep trial eigenvectors. But since the Rayleigh quotient-like
iterations drive naturally the eigenvector approximations to vectors contained in eigensub-
spaces, we can consider a future implementation of the BGII algorithm that would require
only the matrix elements between vectors associated to close or multiple eigenvalues (at
least the ones associated to the vectors pairs contained inV̂ ( j )

`+1, the other ones converging
naturally to zero) and that would build the new vectors as linear combinations of a small
number of vectors (see Eq. (11)). Such an approach could reduce drastically the cost of
the method on systems much larger than the ones treated in this paper. Unfortunately, a
reduction of the asymptotic scaling of the method, when the number of eigenpairs becomes
very large, is difficult to obtain. Indeed the density of the eigenvalues in the part of the
spectrum in which we are interested is likely to increase in this case and thus require us to
enlarge the dimension of the subspacesV̂ ( j )

`+1 in order to keep the same conditioning of the
linear systems.

However, the present algorithm BGII has the advantage over the conjugate gradient
(CG) like algorithms with simultaneous update of all the eigenfunctions [30] that it re-
quires much less memory storage. In our implementation, when computing the correc-
tion for the vector j , we chose to store the vectorŝB`+19̃

( j−α1( j ))
`+1 , . . . , B̂`+19̃

( j+α2( j ))
`+1

defining the projectorQ̃( j )
`+1. In this case, the maximal number of vectors to store (for the

eigenfunctions and their corrections) at the same time is only:p eigenfunction approxi-
mations+ (maxj (α1( j )+α2( j ))+ 1) functions defining the projectors+ 1 correction cur-
rently computed. Moreover, the optimal coefficient multiplying a correction before adding
it to the corresponding eigenvector (often called the time-step) is always 1 in BGII, while
it can be expensive to compute in a CG approach or difficult to estimate (and very small)
in a steepest descent algorithm.

Finally, we mention that the BGII method described in this paper has also been applied
with success to the computation of the electronic structure of theC60 molecule [31], using
a regular grid of 79× 79× 79 nodes, showing its applicability to problems involving more
than 100 eigenvalues.
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